Проведом анализ данных о пассажирах. Данные доступны в виде файла в формате CSV.
import pandas as pd
url = "https://raw.githubusercontent.com/dm-fedorov/pandas_basic/master/%D0%B1%D1%8B%D1%81%D1%82%D1%80%D0%BE%D0%B5%20%D0%B2%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5%20%D0%B2%20pandas/data/titanic.csv"
titanic = pd.read_csv(url)
Pandas
предоставляет функцию read_csv()
для чтения данных, хранящихся в виде CSV-файла, и преобразования их в DataFrame
.
Pandas
поддерживает множество различных форматов файлов или источников данных (csv
, excel
, sql
, json
…), каждый из которых имеет префикс read_*
.
В первую очередь, проверяйте данные после прочтения!
При отображении DataFrame
по умолчанию отображаются первые и последней 5 строк:
titanic
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
886 | 887 | 0 | 2 | Montvila, Rev. Juozas | male | 27.0 | 0 | 0 | 211536 | 13.0000 | NaN | S |
887 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 19.0 | 0 | 0 | 112053 | 30.0000 | B42 | S |
888 | 889 | 0 | 3 | Johnston, Miss. Catherine Helen "Carrie" | female | NaN | 1 | 2 | W./C. 6607 | 23.4500 | NaN | S |
889 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 26.0 | 0 | 0 | 111369 | 30.0000 | C148 | C |
890 | 891 | 0 | 3 | Dooley, Mr. Patrick | male | 32.0 | 0 | 0 | 370376 | 7.7500 | NaN | Q |
891 rows × 12 columns
Первые 8 строк DataFrame
:
titanic.head(8)
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
5 | 6 | 0 | 3 | Moran, Mr. James | male | NaN | 0 | 0 | 330877 | 8.4583 | NaN | Q |
6 | 7 | 0 | 1 | McCarthy, Mr. Timothy J | male | 54.0 | 0 | 0 | 17463 | 51.8625 | E46 | S |
7 | 8 | 0 | 3 | Palsson, Master. Gosta Leonard | male | 2.0 | 3 | 1 | 349909 | 21.0750 | NaN | S |
pandas
содержит метод tail()
для отображения последних N строк.
Например, titanic.tail(10)
вернет последние 10 строк таблицы.
С помощью обращения к атрибуту dtypes
можно проверить, какие типы данных хранятся в столбцах таблицы:
titanic.dtypes
PassengerId int64 Survived int64 Pclass int64 Name object Sex object Age float64 SibSp int64 Parch int64 Ticket object Fare float64 Cabin object Embarked object dtype: object
Типы данных в этом DataFrame
- целые числа (int64
), числа с плавающей точкой (float63
) и строки (object
).
При запросе dtypes
скобки не используются! dtypes
является атрибутом DataFrame
и Series
. Атрибуты представляют собой характеристику DataFrame
/ Series
, тогда как метод (для которого требуются скобки) что-то делает с DataFrame
/ Series
.
Сохраним данные в виде электронной таблицы:
titanic.to_excel('titanic.xlsx', sheet_name='passengers', index=False)
В то время как read_*
функции используются для чтения данных, to_*
методы используются для сохранения данных.
to_excel()
сохраняет данные в виде файла Excel
.
В приведенном примере sheet_name
задает имя листа. При настройке index=False
индексные метки не сохраняются в электронной таблице.
Эквивалентная функция для чтения read_excel()
загрузит данные в DataFrame
:
titanic = pd.read_excel('titanic.xlsx', sheet_name='passengers')
titanic.head()
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
Техническом детали DataFrame
:
titanic.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 PassengerId 891 non-null int64 1 Survived 891 non-null int64 2 Pclass 891 non-null int64 3 Name 891 non-null object 4 Sex 891 non-null object 5 Age 714 non-null float64 6 SibSp 891 non-null int64 7 Parch 891 non-null int64 8 Ticket 891 non-null object 9 Fare 891 non-null float64 10 Cabin 204 non-null object 11 Embarked 889 non-null object dtypes: float64(2), int64(5), object(5) memory usage: 83.7+ KB
Метод info()
предоставляет техническую информацию о DataFrame
, поэтому объясним вывод более подробно:
DataFrame
.non-null
). Некоторые столбцы имеют пропущенные значения и менее 891 non-null
значений.Name
, Sex
, Cabin
и Embarked
состоят из текстовых данных (object
). Другие столбцы представляют собой числовые данные, некоторые из которых являются целыми числами (integer
), а другие - действительными числами (float
).dtypes
.DataFrame
.